Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/138717
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBadiola Mateos, Maider-
dc.contributor.authorHervera Abad, Arnau-
dc.contributor.authorRío Fernández, José Antonio del-
dc.contributor.authorSamitier i Martí, Josep-
dc.date.accessioned2019-08-26T11:01:11Z-
dc.date.available2019-08-26T11:01:11Z-
dc.date.issued2018-12-11-
dc.identifier.issn2296-4185-
dc.identifier.urihttp://hdl.handle.net/2445/138717-
dc.description.abstractMovement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failure s in any part of this circuit could impede or hinder coordinated muscle movement and cause a neu romuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of hysiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo ; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fbioe.2018.00194-
dc.relation.ispartofFrontiers in Bioengineering and Biotechnology, 2018, vol. 6, num. 194-
dc.relation.urihttps://doi.org/10.3389/fbioe.2018.00194-
dc.rightscc-by (c) Badiola Mateos, Maider et al., 2018-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationMalalties neuromusculars-
dc.subject.classificationAparell locomotor-
dc.subject.classificationBioenginyeria-
dc.subject.otherNeuromuscular diseases-
dc.subject.otherMusculoskeletal system-
dc.subject.otherBioengineering-
dc.titleChallenges and future prospects on 3D in-vitro modeling of the neuromuscular circuit-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec685893-
dc.date.updated2019-08-26T11:01:11Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid30622944-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
685893.pdf841.21 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons