Please use this identifier to cite or link to this item:
Title: Superparamagnetic nanoparticles with efficient near-infrared photothermal effect at the second biological window
Author: Busquets i Viñas, Ma. Antonia
Fernández Pradas, Juan Marcos
Serra Coromina, Pere
Estelrich i Latràs, Joan
Keywords: Nanopartícules
Materials magnètics
Fotoquímica orgànica
Magnetic materials
Organic photochemistry
Issue Date: 14-Nov-2020
Publisher: MDPI
Abstract: Superparamagnetic nanoparticles (iron oxide nanoparticles¿IONs) are suitable for hyperthermia after irradiating with radiofrequency radiation. Concerning the suitability for laser ablation, IONs present a low molar absorption coefficient in the near-infrared region close to 800 nm. For this reason, they are combined with other photothermal agents into a hybrid composite. Here, we show that IONs absorb and convert into heat the infrared radiation characteristic of the so-called second-biological window (1000-1350 nm) and, in consequence, they can be used for thermal ablation in such wavelengths. To the known excellent water solubility, colloidal stability and biocompatibility exhibited by IONs, an outstanding photothermal performance must be added. For instance, a temperature increase of 36 °C was obtained after irradiating at 8.7 W cm−2 for 10 min a suspension of IONs at iron concentration of 255 mg L−1. The photothermal conversion efficiency was ~72%. Furthermore, IONs showed high thermogenic stability during the whole process of heating/cooling. To sum up, while the use of IONs in the first bio-window (700-950 nm) presents some concerns, they appear to be good photothermal agents in the second biological window.
Note: Reproducció del document publicat a:
It is part of: Molecules, 2020, vol. 25, num. 22
Related resource:
ISSN: 1420-3049
Appears in Collections:Articles publicats en revistes (Física Aplicada)
Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
704691.pdf2.16 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons