Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/182724
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFigueroa Jiménez, María Dolores-
dc.contributor.authorCañete-Massé, Cristina-
dc.contributor.authorCarbó-Carreté, Maria-
dc.contributor.authorZarabozo-Hurtado, Daniel-
dc.contributor.authorGuàrdia-Olmos, Joan, 1958--
dc.date.accessioned2022-01-27T16:32:00Z-
dc.date.available2022-01-27T16:32:00Z-
dc.date.issued2021-05-07-
dc.identifier.issn0166-4328-
dc.identifier.urihttp://hdl.handle.net/2445/182724-
dc.description.abstractEmerging evidence suggests that an effective or functional connectivity network does not use a static process over time but incorporates dynamic connectivity that shows changes in neuronal activity patterns. Using structural equation models (SEMs), we estimated a dynamic component of the effective network through the effects (recursive and nonrecursive) between regions of interest (ROIs), taking into account the lag 1 effect. The aim of the paper was to find the best structural equation model (SEM) to represent dynamic effective connectivity in people with Down syndrome (DS) in comparison with healthy controls. Twenty-two people with DS were registered in a functional magnetic resonance imaging (fMRI) resting-state paradigm for a period of six minutes. In addition, 22 controls, matched by age and sex, were analyzed with the same statistical approach. In both groups, we found the best global model, which included 6 ROIs within the default mode network (DMN). Connectivity patterns appeared to be different in both groups, and networks in people with DS showed more complexity and had more significant effects than networks in control participants. However, both groups had synchronous and dynamic effects associated with ROIs 3 and 4 related to the upper parietal areas in both brain hemispheres as axes of association and functional integration. It is evident that the correct classification of these groups, especially in cognitive competence, is a good initial step to propose a biomarker in network complexity studies.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.bbr.2021.113188-
dc.relation.ispartofBehavioural Brain Research, 2021, vol. 405, p. 113188-
dc.relation.urihttps://doi.org/10.1016/j.bbr.2021.113188-
dc.rightscc-by-nc-nd (c) Figueroa Jiménez et al., 2021-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Psicologia Social i Psicologia Quantitativa)-
dc.subject.classificationSíndrome de Down-
dc.subject.classificationModels d'equacions estructurals-
dc.subject.classificationImatges per ressonància magnètica-
dc.subject.otherDown syndrome-
dc.subject.otherStructural equation modeling-
dc.subject.otherMagnetic resonance imaging-
dc.titleStructural Equation Models to estimate Dynamic Effective Connectivity Networks in Resting fMRI. A comparison between individuals with Down syndrome and controls-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec708138-
dc.date.updated2022-01-27T16:32:00Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Cognició, Desenvolupament i Psicologia de l'Educació)
Articles publicats en revistes (Psicologia Social i Psicologia Quantitativa)

Files in This Item:
File Description SizeFormat 
708138.pdf4.66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons