Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/18804
Title: Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality
Author: Corral, Álvaro
Díaz Guilera, Albert
Keywords: Física estadística
Termodinàmica
Sistemes no lineals
Propietats magnètiques
Equacions d'estat
Regla de les fases i equilibri
Transformacions de fase (Física estadística)
Equacions diferencials estocàstiques
Statistical physics
Thermodynamics
Nonlinear systems
Magnetic properties
Equations of state
Phase rule and equilibrium
Phase transformations (Statistical physics)
Stochastic differential equations
Issue Date: 1997
Publisher: The American Physical Society
Abstract: A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.55.2434
It is part of: Physical Review E, 1997, vol. 55, núm. 3, p. 2434-2445
URI: http://hdl.handle.net/2445/18804
ISSN: 1063-651X
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
143494.pdf238.09 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.