Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/18863
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFranzese, Giancarlocat
dc.contributor.authorCataudella, Vittoriocat
dc.contributor.authorConiglio, Antonio, 1940-cat
dc.date.accessioned2011-07-07T12:54:15Z-
dc.date.available2011-07-07T12:54:15Z-
dc.date.issued1998-
dc.identifier.issn1063-651X-
dc.identifier.urihttp://hdl.handle.net/2445/18863-
dc.description.abstractThe invaded cluster (IC) dynamics introduced by Machta et al. [Phys. Rev. Lett. 75, 2792 (1995)] is extended to the fully frustrated Ising model on a square lattice. The properties of the dynamics that exhibits numerical evidence of self-organized criticality are studied. The fluctuations in the IC dynamics are shown to be intrinsic of the algorithm and the fluctuation-dissipation theorem is no longer valid. The relaxation time is found to be very short and does not present a critical size dependence.eng
dc.format.extent6 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.57.88cat
dc.relation.ispartofPhysical Review E, 1998, vol. 57, núm. 1, p. 88-93-
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevE.57.88-
dc.rights(c) American Physical Society, 1998-
dc.subject.classificationModel d'Isingcat
dc.subject.classificationMicroagregatscat
dc.subject.classificationPropietats magnètiquescat
dc.subject.classificationFísica estadísticacat
dc.subject.otherIsing modeleng
dc.subject.otherMicroclusterseng
dc.subject.otherMagnetic propertieseng
dc.subject.otherStatistical physicseng
dc.titleInvaded cluster dynamics for frustrated modelseng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec513982-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
513982.pdf238.19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.