Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaitoglou, Stefanos-
dc.contributor.authorPascual Miralles, Esther-
dc.contributor.authorBertrán Serra, Enric-
dc.contributor.authorAndújar Bella, José Luis-
dc.description.abstractThe extraordinary properties of graphene make it one of the most interesting materials for future applications. Chemical vapor deposition (CVD) is the syntheticmethod that permits obtaining large areas ofmonolayer graphene. To achieve this, it is important to find the appropriate conditions for each experimental system. In our CVD reactor working at low pressure, important factors appear to be the pretreatment of the copper substrate, considering both its cleaning and its annealing before the growing process.The carbon precursor/hydrogen flow ratio and its modification during the growth are significant in order to obtain large area graphene crystals with few defects. In this work, we have focused on the study of the methane and the hydrogen flows to control the production of single layer graphene (SLG) and its growth time. In particular, we observe that hydrogen concentration increases during a usual growing process (keeping stable the methane/hydrogen flow ratio) resulting in etched domains. In order to balance this increase, a modification of the hydrogen flow results in the growth of smooth hexagonal SLG domains. This is a result of the etching effect that hydrogen performs on the growing graphene. It is essential, therefore, to study the moderated presence of hydrogen.-
dc.format.extent10 p.-
dc.publisherHindawi Publishing Corporation-
dc.relation.isformatofReproducció del document publicat a:
dc.relation.ispartofJournal of Nanomaterials, 2016, vol. 2016, num. 9640935, p. 1-10-
dc.rightscc-by (c) Chaitoglou, Stefanos et al., 2016-
dc.subject.classificationDeposició química en fase vapor-
dc.subject.otherChemical vapor deposition-
dc.titleEffect of a Balanced Concentration of Hydrogen on Graphene CVD Growth-
Appears in Collections:Articles publicats en revistes (Física Aplicada)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
664047.pdf5.41 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons