Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/127418
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCasacuberta, Carles-
dc.contributor.authorMuñoz Pereiro, Luis-
dc.date.accessioned2019-01-18T09:59:07Z-
dc.date.available2019-01-18T09:59:07Z-
dc.date.issued2018-06-27-
dc.identifier.urihttps://hdl.handle.net/2445/127418-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Carles Casacubertaca
dc.description.abstract[en] In this work we study the Hopf map from the 3-sphere $S^{3} $ to the 2-sphere $S^{2}$. We review some properties of the higher homotopy groups of spaces and prove that the Hopf map is a generator of $\pi_{3} (S^{2})$. As an introduction to stable homotopy theory, we prove the Freudenthal suspension theorem for the spheres and explain why the first stable homotopy group $\pi^{s}_{1}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. In order to prove it we use the Pontryagin-Thom construction, a result that relates the homotopy groups of spheres with framed cobordism classes of framed manifolds. Our goal is to understand geometrically why the class represented by the Hopf map has infinite order in $\pi_{3}(S^{2})$ but its suspensions have order 2 in $\pi_{n+1}(S^{n})$ for $n > 2$.ca
dc.format.extent34 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Luis Muñoz Pereiro, 2018-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationFeixos fibrats (Matemàtica)ca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationGrups d'homotopiaca
dc.subject.classificationVarietats diferenciablesca
dc.subject.otherFiber bundles (Mathematics)en
dc.subject.otherBachelor's theses-
dc.subject.otherHomotopy groupsen
dc.subject.otherDifferentiable manifoldsen
dc.titleEl fibrado de Hopf en homotopía estableca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons