Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/127418
Title: | El fibrado de Hopf en homotopía estable |
Author: | Muñoz Pereiro, Luis |
Director/Tutor: | Casacuberta, Carles |
Keywords: | Feixos fibrats (Matemàtica) Treballs de fi de grau Grups d'homotopia Varietats diferenciables Fiber bundles (Mathematics) Bachelor's theses Homotopy groups Differentiable manifolds |
Issue Date: | 27-Jun-2018 |
Abstract: | [en] In this work we study the Hopf map from the 3-sphere $S^{3} $ to the 2-sphere $S^{2}$. We review some properties of the higher homotopy groups of spaces and prove that the Hopf map is a generator of $\pi_{3} (S^{2})$. As an introduction to stable homotopy theory, we prove the Freudenthal suspension theorem for the spheres and explain why the first stable homotopy group $\pi^{s}_{1}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. In order to prove it we use the Pontryagin-Thom construction, a result that relates the homotopy groups of spheres with framed cobordism classes of framed manifolds. Our goal is to understand geometrically why the class represented by the Hopf map has infinite order in $\pi_{3}(S^{2})$ but its suspensions have order 2 in $\pi_{n+1}(S^{n})$ for $n > 2$. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Carles Casacuberta |
URI: | https://hdl.handle.net/2445/127418 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
memoria.pdf | Memòria | 1.32 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License