Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/127418
Title: El fibrado de Hopf en homotopía estable
Author: Muñoz Pereiro, Luis
Director/Tutor: Casacuberta, Carles
Keywords: Feixos fibrats (Matemàtica)
Treballs de fi de grau
Grups d'homotopia
Varietats diferenciables
Fiber bundles (Mathematics)
Bachelor's theses
Homotopy groups
Differentiable manifolds
Issue Date: 27-Jun-2018
Abstract: [en] In this work we study the Hopf map from the 3-sphere $S^{3} $ to the 2-sphere $S^{2}$. We review some properties of the higher homotopy groups of spaces and prove that the Hopf map is a generator of $\pi_{3} (S^{2})$. As an introduction to stable homotopy theory, we prove the Freudenthal suspension theorem for the spheres and explain why the first stable homotopy group $\pi^{s}_{1}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. In order to prove it we use the Pontryagin-Thom construction, a result that relates the homotopy groups of spheres with framed cobordism classes of framed manifolds. Our goal is to understand geometrically why the class represented by the Hopf map has infinite order in $\pi_{3}(S^{2})$ but its suspensions have order 2 in $\pi_{n+1}(S^{n})$ for $n > 2$.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Carles Casacuberta
URI: https://hdl.handle.net/2445/127418
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons