Please use this identifier to cite or link to this item:
Title: Kernel conditional Embeddings for associating omic data types
Author: Reverter Comes, Ferran
Vegas Lozano, Esteban
Oller i Sala, Josep Maria
Keywords: Bioinformàtica
Issue Date: 2018
Publisher: Springer Verlag
Abstract: Computational methods are needed to combine diverse type of genome-wide data in a meaningful manner. Based on the kernel embedding of conditional probability distributions, a new measure for inferring the degree of association between two multivariate data sources is introduced. We analyze the performance of the proposed measure to integrate mRNA expression, DNA methylation and miRNA expression data.
Note: Versió postprint del document publicat a:
It is part of: Lecture Notes in Computer Science, 2018, vol. 10813 LNBI, p. 501-510
Related resource:
ISSN: 0302-9743
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
681318.pdf537.46 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.