Please use this identifier to cite or link to this item:
Title: An entire transcendental family with a persistent Siegel disc
Author: Berenguel Montoro, Rubén
Fagella Rabionet, Núria
Keywords: Sistemes dinàmics complexos
Funcions de variables complexes
Complex dynamical systems
Functions of complex variables
Issue Date: 2010
Publisher: Taylor and Francis
Abstract: We study the class of entire transcendental maps of finite order with one critical point and one asymptotic value, which has exactly one finite pre-image, and having a persistent Siegel disc. After normalisation this is a one parameter family $f_{a}$ with $a \in \mathbb{C}^{*}$ which includes the semi-standard map $\lambda z \mathrm{e}^{z}$ at $a=1$, approaches the exponential map when $a \rightarrow 0$ and a quadratic polynomial when $a \rightarrow \infty$. We investigate the stable components of the parameter plane (capture components and semi-hyperbolic components) and also some topological properties of the Siegel disc in terms of the parameter.
Note: Versió postprint del document publicat a:
It is part of: Journal of Difference Equations and Applications, 2010, vol. 16, num. 5, p. 523-553
Related resource:
ISSN: 1023-6198
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
573914.pdf1.26 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.