Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBerenguel Montoro, Rubén-
dc.contributor.authorFagella Rabionet, Núria-
dc.description.abstractWe study the class of entire transcendental maps of finite order with one critical point and one asymptotic value, which has exactly one finite pre-image, and having a persistent Siegel disc. After normalisation this is a one parameter family $f_{a}$ with $a \in \mathbb{C}^{*}$ which includes the semi-standard map $\lambda z \mathrm{e}^{z}$ at $a=1$, approaches the exponential map when $a \rightarrow 0$ and a quadratic polynomial when $a \rightarrow \infty$. We investigate the stable components of the parameter plane (capture components and semi-hyperbolic components) and also some topological properties of the Siegel disc in terms of the parameter.-
dc.format.extent31 p.-
dc.publisherTaylor and Francis-
dc.relation.isformatofVersió postprint del document publicat a:
dc.relation.ispartofJournal of Difference Equations and Applications, 2010, vol. 16, num. 5, p. 523-553-
dc.rights(c) Taylor and Francis, 2010-
dc.subject.classificationSistemes dinàmics complexos-
dc.subject.classificationFuncions de variables complexes-
dc.subject.otherComplex dynamical systems-
dc.subject.otherFunctions of complex variables-
dc.titleAn entire transcendental family with a persistent Siegel disc-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
573914.pdf1.26 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.