Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/164096
Title: | An entire transcendental family with a persistent Siegel disc |
Author: | Berenguel Montoro, Rubén Fagella Rabionet, Núria |
Keywords: | Sistemes dinàmics complexos Funcions de variables complexes Complex dynamical systems Functions of complex variables |
Issue Date: | 2010 |
Publisher: | Taylor and Francis |
Abstract: | We study the class of entire transcendental maps of finite order with one critical point and one asymptotic value, which has exactly one finite pre-image, and having a persistent Siegel disc. After normalisation this is a one parameter family $f_{a}$ with $a \in \mathbb{C}^{*}$ which includes the semi-standard map $\lambda z \mathrm{e}^{z}$ at $a=1$, approaches the exponential map when $a \rightarrow 0$ and a quadratic polynomial when $a \rightarrow \infty$. We investigate the stable components of the parameter plane (capture components and semi-hyperbolic components) and also some topological properties of the Siegel disc in terms of the parameter. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1080/10236190903251738 |
It is part of: | Journal of Difference Equations and Applications, 2010, vol. 16, num. 5, p. 523-553 |
URI: | https://hdl.handle.net/2445/164096 |
Related resource: | https://doi.org/10.1080/10236190903251738 |
ISSN: | 1023-6198 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
573914.pdf | 1.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.