Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/179955
Title: Layer-by-layer modification effects on a nanopore's inner surface of polycarbonate track-etched membranes
Author: Paoli, Roberto
Bulwan, Maria
Castaño Linares, Óscar
Engel, Elisabeth
Rodríguez Cabello, J. C.. C.
Homs Corbera, Antoni
Samitier i Martí, Josep
Keywords: Nanotecnologia
Policarbonats
Nanociència
Nanotechnology
Polycarbonates
Nanoscience
Issue Date: 30-Sep-2020
Publisher: Royal Society of Chemistry
Abstract: The control of the morphology, as well as the physical and chemical properties, of nanopores is a key issue for many applications. Reducing pore size is important in nanopore-based sensing applications as it helps to increase sensitivity. Changes of other physical properties such as surface net charge can also modify transport selectivity of the pores. We have studied how polyelectrolyte layer-by-layer (LBL) surface modification can be used to change the characteristics of nanoporous membranes. Studies were performed with a custom made three-dimensional multilayer microfluidic device able to fit membrane samples. The device allowed us to efficiently control LBL film deposition over blank low-cost commercially available polycarbonate track-etched (PCTE) membranes. We have demonstrated pore diameter reduction and deposition of the layers inside the pores through confocal and SEM images. Posterior impedance measurement studies served to evaluate experimentally the effect of the LBL deposition on the net inner nanopore surface charge and diameter. Measurements using direct current (DC) and alternative current (AC) voltages have demonstrated contrasted behaviors depending on the number and parity of deposited opposite charge layers. PCTE membranes are originally negatively charged and results evidenced higher impedance increases for paired charge LBL depositions. Impedance decreased when an unpaired positive layer was added. These results showed a different influence on the overall ion motility due to the effect of different surface charges. Results have been fit into a model that suggested a strong dependence of nanopores' impedance module to surface charge on conductive buffers, such as Phosphate Buffer Saline (PBS), even on relatively large nanopores. In AC significant differences between paired and unpaired charged LBL depositions tended to disappear as the total number of layers increased.
Note: Reproducció del document publicat a: https://doi.org/10.1039/d0ra05322h
It is part of: RSC Advances, 2020, vol. 10, num. 59, p. 35930-35940
URI: http://hdl.handle.net/2445/179955
Related resource: https://doi.org/10.1039/d0ra05322h
ISSN: 2046-2069
Appears in Collections:Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))
Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
709023.pdf1.86 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons