Please use this identifier to cite or link to this item:
Title: Joint generalized quantile and conditional tail expectation regression for insurance risk analysis
Author: Guillén, Montserrat
Bermúdez, Lluís
Pitarque, Albert
Keywords: Anàlisi de regressió
Risc (Assegurances)
Teoria de la predicció
Assegurances d'automòbils
Regression analysis
Risk (Insurance)
Prediction theory
Automobile insurance
Issue Date: 1-Jul-2021
Publisher: Elsevier B.V.
Abstract: Based on recent developments in joint regression models for quantile and expected shortfall, this paper seeks to develop models to analyse the risk in the right tail of the distribution of non-negative dependent random variables. We propose an algorithm to estimate conditional tail expectation regressions, introducing generalized risk regression models with link functions that are similar to those in generalized linear models. To preserve the natural ordering of risk measures conditional on a set of covariates, we add extra non-negative terms to the quantile regression. A case using telematics data in motor insurance illustrates the practical implementation of predictive risk models and their potential usefulness in actuarial analysis.
Note: Reproducció del document publicat a :
It is part of: Insurance Mathematics and Economics, 2021, vol. 99, num. July, p. 1-8
Related resource:
ISSN: 0167-6687
Appears in Collections:Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)

Files in This Item:
File Description SizeFormat 
714282.pdf847.37 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons