Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/180424
Title: | Joint generalized quantile and conditional tail expectation regression for insurance risk analysis |
Author: | Guillén, Montserrat Bermúdez, Lluís Pitarque, Albert |
Keywords: | Anàlisi de regressió Risc (Assegurances) Teoria de la predicció Assegurances d'automòbils Regression analysis Risk (Insurance) Prediction theory Automobile insurance |
Issue Date: | 1-Jul-2021 |
Publisher: | Elsevier B.V. |
Abstract: | Based on recent developments in joint regression models for quantile and expected shortfall, this paper seeks to develop models to analyse the risk in the right tail of the distribution of non-negative dependent random variables. We propose an algorithm to estimate conditional tail expectation regressions, introducing generalized risk regression models with link functions that are similar to those in generalized linear models. To preserve the natural ordering of risk measures conditional on a set of covariates, we add extra non-negative terms to the quantile regression. A case using telematics data in motor insurance illustrates the practical implementation of predictive risk models and their potential usefulness in actuarial analysis. |
Note: | Reproducció del document publicat a : https://doi.org/10.1016/j.insmatheco.2021.03.006 |
It is part of: | Insurance Mathematics and Economics, 2021, vol. 99, num. July, p. 1-8 |
URI: | https://hdl.handle.net/2445/180424 |
Related resource: | https://doi.org/10.1016/j.insmatheco.2021.03.006 |
ISSN: | 0167-6687 |
Appears in Collections: | Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
714282.pdf | 847.37 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License