Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/185163
Title: El Lasso: regularització i selecció de predictors
Author: Iglesias Munilla, Andrea
Director/Tutor: Fortiana Gregori, Josep
Keywords: Anàlisi de regressió
Treballs de fi de grau
Estadística
Dades massives
Regression analysis
Bachelor's theses
Statistics
Big data
Issue Date: 20-Jun-2021
Abstract: [en] Lasso (Least Absolute Shrinkage and Selection Operator) is a regression method that performs both regularization and variable selection, improving prediction accuracy and interpretability of the resulting model. In this project we follow evolution from the plain linear model, through Ridge regression, for many years the most popular technique to improve the precision of predictions, to Lasso. We delve into numerical procedures for calculating Lasso solutions: coordinate descent and LARS. We see some extensions of Lasso such as Elastic Net regression, a neat improvement when optimality fails. We illustrate these methods with several real data examples using the R programming language (see notebooks and HTML files in appendices to the main text).
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Josep Fortiana Gregori
URI: https://hdl.handle.net/2445/185163
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_andrea_iglesias_munilla.pdfMemòria634.05 kBAdobe PDFView/Open
notebooks.zipCodi font1.14 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons