Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/185163
Title: | El Lasso: regularització i selecció de predictors |
Author: | Iglesias Munilla, Andrea |
Director/Tutor: | Fortiana Gregori, Josep |
Keywords: | Anàlisi de regressió Treballs de fi de grau Estadística Dades massives Regression analysis Bachelor's theses Statistics Big data |
Issue Date: | 20-Jun-2021 |
Abstract: | [en] Lasso (Least Absolute Shrinkage and Selection Operator) is a regression method that performs both regularization and variable selection, improving prediction accuracy and interpretability of the resulting model. In this project we follow evolution from the plain linear model, through Ridge regression, for many years the most popular technique to improve the precision of predictions, to Lasso. We delve into numerical procedures for calculating Lasso solutions: coordinate descent and LARS. We see some extensions of Lasso such as Elastic Net regression, a neat improvement when optimality fails. We illustrate these methods with several real data examples using the R programming language (see notebooks and HTML files in appendices to the main text). |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Josep Fortiana Gregori |
URI: | https://hdl.handle.net/2445/185163 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_andrea_iglesias_munilla.pdf | Memòria | 634.05 kB | Adobe PDF | View/Open |
notebooks.zip | Codi font | 1.14 MB | zip | View/Open |
This item is licensed under a
Creative Commons License