Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188590
Machine learning and statistical analysis for diagnosis of hematological diseases
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Blood is a biological fluid composed mainly of water, red blood cells and other components and it is a non-Newtonian fluid. Red blood cells play an important role in the rheological properties of the blood and are the main responsible for the shear thinning behaviour of blood. Some hematological diseases can change the geometrical shape of red blood cells and thus their viscosity.
In this work we have computed the viscosity of different blood samples that were obtained with a microfluidic device and normalized the viscosities for hematocrit using statistical analysis tools.
We have also used different machine learning methods as Logistic Regressions or Artificial Neural Networks (ANN) to predict if a sample of blood corresponds to healthy blood or to a blood with an hematological disease. We have obtained different performance for the different methods, some of them with very good results and an accuracy of 94% of correct prediction has been achieved with an ANN model
Descripció
Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutora: Aurora Hernández-Machado
Matèries (anglès)
Citació
Col·leccions
Citació
BENÍTEZ COLOMINAS, Pol. Machine learning and statistical analysis for diagnosis of hematological diseases. [consulta: 11 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/188590]