Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/196620
Title: Teoremas de Jordan y Brouwer: demostraciones elementales
Author: Riera Vaca, Gabriela
Director/Tutor: Mundet i Riera, Ignasi
Keywords: Topologia
Treballs de fi de grau
Geometria euclidiana
Operadors no lineals
Teoria del punt fix
Topology
Bachelor's theses
Euclidean geometry
Nonlinear operators
Fixed point theory
Issue Date: 13-Jun-2022
Abstract: [en] In mathematics, an elementary proof is one that uses only basic techniques. In this work we provide the elementary proof of the Jordan curve at $\mathbb{R}^2$ and the Brouwer fixed point theorems. The Jordan curve theorem on $\mathbb{R}^2$ tells us that every simple closed curve separates the plane into two connected components. The elementary proof uses four lemmas, whose proofs we also carry out, and consists of approximating the curve by means of polygons. Let $\mathbb{B}^n \subset \mathbb{R}^n$ be the n-dimensional unit ball. Brouwer's fixed point theorem tells us that every continuous function $f: \mathbb{B}^n \rightarrow \mathbb{B}^n$ has a fixed point. The elementary proof is based on the fact that the compact, convex and non-empty subsets of $\mathbb{R}^n$ are homeomorphic and on Sperner's Lemma, which we also state and prove. Sperner's Lemma is a combinatorial result of coloring n-dimensional simplices.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Ignasi Mundet i Riera
URI: https://hdl.handle.net/2445/196620
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_riera_vaca_gabriela.pdfMemòria1.95 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons