Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/207534
Title: | Integrative pathway enrichment analysis of multivariate omics data |
Author: | Paczkowska, Marta Barenboim, Jonathan Sintupisut, Nardnisa Fox, Natalie S. Zhu, Helen Abd-Rabbo, Diala Mee, Miles W. Boutros, Paul C. Deu-Pons, Jordi Frigola, Joan Gonzalez-Perez, Abel Muiños, Ferran Mularoni, Loris Pich, Oriol Reyes-Salazar, Iker Rubio-Perez, Carlota Sabarinathan, Radhakrishnan Tamborero, David PCAWG Drivers and Functional Interpretation Working Group Reimand, Jüri PCAWG Consortium Aymerich Gregorio, Marta Campo Güerri, Elias López Guillermo, Armando Gelpi Buchaca, Josep Lluís Rabionet Janssen, Raquel |
Keywords: | Processament de dades Biologia molecular Data processing Molecular biology |
Issue Date: | 5-Feb-2020 |
Publisher: | Nature Publishing Group |
Abstract: | Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations. |
Note: | Reproducció del document publicat a: https://doi.org/10.1038/s41467-019-13983-9 |
It is part of: | Nature Communications, 2020, vol. 11, num.1, p. 1-16 |
URI: | https://hdl.handle.net/2445/207534 |
Related resource: | https://doi.org/10.1038/s41467-019-13983-9 |
ISSN: | 2041-1723 |
Appears in Collections: | Articles publicats en revistes (Genètica, Microbiologia i Estadística) Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer) Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
255390.pdf | 6.49 MB | Adobe PDF | View/Open | |
255390_cor.pdf | Author Correction | 272.52 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License