Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/208001
Classification of the invariants of foliations by curves of low degree on the three-dimensional projective space
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Resum
We study foliations by curves on the three-dimensional projective space with no isolated singularities, which is equivalent to assuming that the conormal sheaf is locally free. We provide a classification of the topological and algebraic invariants of the conormal sheaves and singular schemes for such foliations by curves, up to degree 3. In particular, we prove that foliations by curves of degree 1 or 2 are contained in a pencil of planes or are Legendrian, and are given by the complete intersection of two codimension one distributions. Furthermore, we prove that the conormal sheaf of a foliation by curves of degree 3 with reduced singular scheme either splits as a sum of line bundles or is an instanton bundle. For degree larger than 3, we focus on two classes of foliations by curves, namely Legendrian foliations and those whose conormal sheaf is a twisted null-correlation bundle. We give characterizations of such foliations, describe their singular schemes and their moduli spaces.
Descripció
Citació
Citació
CORRÊA, Maurício, JARDIM, Marcos, MARCHESI, Simone. Classification of the invariants of foliations by curves of low degree on the three-dimensional projective space. _Revista Matematica Iberoamericana_. 2023. Vol. 39, núm. 5, pàgs. 1641-1680. [consulta: 10 de desembre de 2025]. ISSN: 0213-2230. [Disponible a: https://hdl.handle.net/2445/208001]