Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/211465
Title: | Calderón-Zygmund estimates for the Laplacian |
Author: | Jan Bruno, Lewenstein Sanpera |
Director/Tutor: | Ros, Xavier |
Keywords: | Equacions en derivades parcials Equacions diferencials el·líptiques Espais funcionals Treballs de fi de grau Partial differential equations Elliptic differential equations Function spaces Bachelor's theses |
Issue Date: | 17-Jan-2024 |
Abstract: | [en] Regularity theory for Partial Differential Equations might be one of the most important topics in the field. With many applications, some of them in areas further away like Mathematical Physics, learning the basic regularity estimates for the Laplacian seems a crucial step into understanding more general results and solutions. This project intends to provide the tools and proofs of the CalderónZygmund estimates for the Laplacian equation $\Delta u=f$, with $f \in L^p$. We will separate in three distinct cases: $p=2, p \in(2, \infty)$ and $p=\infty$, each with a different proof. Further, using blow-up techniques introduced in [1] a new proof for the limiting case $p=\infty$ will be provided. Finally, we intend to remark a few points that could potentially lead towards a blow-up proof for the general $L^p$ case. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Xavier Ros |
URI: | https://hdl.handle.net/2445/211465 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_lewenstein_sanpera_jan.pdf | Memòria | 478.43 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License