Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215131
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBolancé Losilla, Catalina-
dc.contributor.authorDai, Lei-
dc.date.accessioned2024-09-13T11:36:03Z-
dc.date.available2024-09-13T11:36:03Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/215131-
dc.descriptionTreballs Finals del Màster de Ciències Actuarials i Financeres, Facultat d'Economia i Empresa, Universitat de Barcelona, Curs: 2023-2024, Tutoria: Catalina Bolancé Losillaca
dc.description.abstractThis work explores the utilization of double cross-validation methods for determining the optimal bandwidth in kernel regression using single index-models. Kernel regression is a non-parametric technique widely employed in various fields, particularly in smoothing noisy data. The bandwidth parameter plays a crucial role in kernel regression, controlling the smoothness of the estimated function. Selecting an appropriate bandwidth is essential for achieving accurate and robust model performance. Traditional approaches to band- width selection often rely on heuristic methods or fixed rules, which may not be optimal for all datasets (...)ca
dc.format.extent38 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Dai, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciències Actuarials i Financeres (CAF)-
dc.subject.classificationFuncions de Kernelcat
dc.subject.classificationAnàlisi de regressiócat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherKernel functionseng
dc.subject.otherRegression analysiseng
dc.subject.otherMaster's thesiseng
dc.titleAlternative Functionals Estimation Based on Index Models and Kernel Approachca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Ciències Actuarials i Financeres (CAF)

Files in This Item:
File Description SizeFormat 
TFM-CAF-Dai+Bolance_2024.pdf493.24 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons