Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215139
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOrtiz García, Luis-
dc.contributor.authorTubella Domingo, Oriol-
dc.date.accessioned2024-09-13T12:12:39Z-
dc.date.available2024-09-13T12:12:39Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/215139-
dc.descriptionTreballs Finals del Màster de Ciències Actuarials i Financeres, Facultat d'Economia i Empresa, Universitat de Barcelona, Curs: 2023-2024, Tutor: Luis Ortiz Graciaca
dc.description.abstractThe COS method exploits the relation between the characteristic function of a random variable and the series coefficients of the Fourier-cosine expansion of the density function. After the mathematical introduction and the derivation of the Black-Scholes formula, we introduce with all the details the COS method. We compare, in terms of absolute error and in CPU time, its performance when pricing European options with a Monte Carlo scheme and with the Black-Scholes value of the derivative. An error analysis of COS method is also provided. Numerical experiments confirm the fast convergence and the precision of the COS method.ca
dc.format.extent47 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Tubella Domingo, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciències Actuarials i Financeres (CAF)-
dc.subject.classificationOpcions (Finances)cat
dc.subject.classificationMètode de Montecarlocat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherOptions (Finance)eng
dc.subject.otherMonte Carlo methodeng
dc.subject.otherMaster's thesiseng
dc.titleThe COS method for pricing European optionsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Ciències Actuarials i Financeres (CAF)

Files in This Item:
File Description SizeFormat 
TFM-CAF_Tubella+Ortiz_2024.pdf710.53 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons