Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215795
Title: Machine Learning for Infinite Neutron Matter at Finite Temperatures
Author: Martíınez Marimon, Alba
Director/Tutor: Rios Huguet, Arnau
Rozalén Sarmiento, Javier
Keywords: Aprenentatge automàtic
Estels de neutrons
Treballs de fi de grau
Machine learning
Neutron stars
Bachelor's theses
Issue Date: Jun-2024
Abstract: In this paper, machine learning is used to model the imaginary part of the self-energy of a neutron-star binary system, which is approximated as infinite neutron matter. The performance of the model is evaluated by computing physical properties such as the momentum distribution and the total energy. The results obtained with the model show a high degree of accuracy when compared to theoretical values
Note: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutors: Arnau Rios Huguet, Javier Rozalén Sarmiento
URI: https://hdl.handle.net/2445/215795
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
MARTÍNEZ MARIMON ALBA.pdf519.48 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons