Please use this identifier to cite or link to this item:
                
    
    https://hdl.handle.net/2445/216593| Title: | Discrete degree of symmetry of manifolds | 
| Author: | Mundet i Riera, Ignasi | 
| Keywords: | Grups de transformacions Topologia Transformation groups Topology | 
| Issue Date: | 19-Apr-2024 | 
| Publisher: | Springer Verlag | 
| Abstract: | We define the discrete degree of symmetry disc-sym $(X)$ of a closed $n$-manifold $X$ as the biggest $m \geq 0$ such that $X$ supports an effective action of $(\mathbb{Z} / r)^m$ for arbitrarily big values of $r$. We prove that if $X$ is connected then disc-sym $(X) \leq$ $3 n / 2$. We propose the question of whether for every closed connected $n$-manifold $X$ the inequality disc-sym $(X) \leq n$ holds true, and whether the only closed connected $n$-manifold $X$ for which disc-sym $(X)=n$ is the torus $T^n$. We prove partial results providing evidence for an affirmative answer to this question. | 
| Note: | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1007/s00031-024-09858-z | 
| It is part of: | Transformation Groups, 2024 | 
| URI: | https://hdl.handle.net/2445/216593 | 
| Related resource: | https://doi.org/https://doi.org/10.1007/s00031-024-09858-z | 
| ISSN: | 1083-4362 | 
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) | 
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 870730.pdf | 823.69 kB | Adobe PDF | View/Open | 
    This item is licensed under a
    Creative Commons License
	 
 
	 
	