Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216593
Title: Discrete degree of symmetry of manifolds
Author: Mundet i Riera, Ignasi
Keywords: Grups de transformacions
Topologia
Transformation groups
Topology
Issue Date: 19-Apr-2024
Publisher: Springer Verlag
Abstract: We define the discrete degree of symmetry disc-sym $(X)$ of a closed $n$-manifold $X$ as the biggest $m \geq 0$ such that $X$ supports an effective action of $(\mathbb{Z} / r)^m$ for arbitrarily big values of $r$. We prove that if $X$ is connected then disc-sym $(X) \leq$ $3 n / 2$. We propose the question of whether for every closed connected $n$-manifold $X$ the inequality disc-sym $(X) \leq n$ holds true, and whether the only closed connected $n$-manifold $X$ for which disc-sym $(X)=n$ is the torus $T^n$. We prove partial results providing evidence for an affirmative answer to this question.
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.1007/s00031-024-09858-z
It is part of: Transformation Groups, 2024
URI: https://hdl.handle.net/2445/216593
Related resource: https://doi.org/https://doi.org/10.1007/s00031-024-09858-z
ISSN: 1083-4362
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870730.pdf823.69 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons