Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216593
Title: | Discrete degree of symmetry of manifolds |
Author: | Mundet i Riera, Ignasi |
Keywords: | Grups de transformacions Topologia Transformation groups Topology |
Issue Date: | 19-Apr-2024 |
Publisher: | Springer Verlag |
Abstract: | We define the discrete degree of symmetry disc-sym $(X)$ of a closed $n$-manifold $X$ as the biggest $m \geq 0$ such that $X$ supports an effective action of $(\mathbb{Z} / r)^m$ for arbitrarily big values of $r$. We prove that if $X$ is connected then disc-sym $(X) \leq$ $3 n / 2$. We propose the question of whether for every closed connected $n$-manifold $X$ the inequality disc-sym $(X) \leq n$ holds true, and whether the only closed connected $n$-manifold $X$ for which disc-sym $(X)=n$ is the torus $T^n$. We prove partial results providing evidence for an affirmative answer to this question. |
Note: | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1007/s00031-024-09858-z |
It is part of: | Transformation Groups, 2024 |
URI: | https://hdl.handle.net/2445/216593 |
Related resource: | https://doi.org/https://doi.org/10.1007/s00031-024-09858-z |
ISSN: | 1083-4362 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870730.pdf | 823.69 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License