Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216830
Title: Comparative analysis of state-of-the-art deep-learning based face editing algorithms
Author: Ruiz Ávila, María
Director/Tutor: Radeva, Petia
Aghaei, Maya
Keywords: Aprenentatge automàtic
Visió per ordinador
Reconeixement facial (Informàtica)
Processament digital d'imatges
Programari
Treballs de fi de grau
Xarxes neuronals (Informàtica)
Machine learning
Computer vision
Human face recognition (Computer science)
Digital image processing
Computer software
Bachelor's theses
Neural networks (Computer science)
Issue Date: 10-Jun-2024
Abstract: [en] Facial attribute transformation, which involves manipulating specific facial features in images and videos, has become a focal point in computer vision and image processing. This project conducts a comprehensive comparative analysis of cutting-edge methodologies, utilizing diverse models to modify latent imagery representations. We assess various state-of-the-art techniques in facial attribute editing through quantitative, qualitative, and efficiency metrics. Our study demonstrates the superior efficacy of an innovative approach using the Multi-Attribute Latent Transformer Model, which adeptly learns and modifies multiple facial attributes simultaneously. This model not only enhances operational efficiency but also maintains the authenticity and integrity of facial identities. Additionally, we investigate how the correlation of attributes in the training images introduces bias in the results. As part of the project, we have developed a user interface that allows for the visual comparison of four models. This application enables users to observe and compare the distinctions and effectiveness of each model side-by-side. In summary, this research advances the field of facial attribute modification by presenting an in-depth comparative study that highlights the strengths and limitations of leading methodologies in face editing, thereby laying the groundwork for future innovations in refined and scalable facial image transformation.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Petia Radeva i Maya Aghaei
URI: https://hdl.handle.net/2445/216830
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Treballs Finals de Grau (TFG) - Matemàtiques
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfg_ruiz_avila_maria.pdfMemòria12.82 MBAdobe PDFView/Open
MariaRuizAvila-codi.zipCodi font11.45 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons