Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216972
Title: Free energy of critical droplets—from the binodal to the spinodal
Author: Aasen, Ailo
Wilhelmsen, Øivind
Hammer, Morten
Reguera, D. (David)
Keywords: Mètode de Montecarlo
Capil·laritat
Teoria del funcional de densitat
Monte Carlo method
Capillarity
Density functionals
Issue Date: 21-Mar-2023
Publisher: American Institute of Physics (AIP)
Abstract: Arguably, the main challenge of nucleation theory is to accurately evaluate the work of formation of a critical embryo in the new phase, which governs the nucleation rate. In Classical Nucleation Theory (CNT), this work of formation is estimated using the capillarity approximation, which relies on the value of the planar surface tension. This approximation has been blamed for the large discrepancies between predictions from CNT and experiments. In this work, we present a study of the free energy of formation of critical clusters of the Lennard-Jones fluid truncated and shifted at 2.5σ using Monte Carlo simulations, density gradient theory, and density functional theory. We find that density gradient theory and density functional theory accurately reproduce molecular simulation results for critical droplet sizes and their free energies. The capillarity approximation grossly overestimates the free energy of small droplets. The incorporation of curvature corrections up to the second order with the Helfrich expansion greatly remedies this and performs very well for most of the experimentally accessible regions. However, it is imprecise for the smallest droplets and largest metastabilities since it does not account for a vanishing nucleation barrier at the spinodal. To remedy this, we propose a scaling function that uses all relevant ingredients without adding fitting parameters. The scaling function reproduces accurately the free energy of the formation of critical droplets for the entire metastability range and all temperatures examined and deviates from density gradient theory by less than one kBT
Note: Reproducció del document publicat a: https://doi.org/10.1063/5.0142533
It is part of: Journal of Chemical Physics, 2023, vol. 158
URI: https://hdl.handle.net/2445/216972
Related resource: https://doi.org/10.1063/5.0142533
ISSN: 0021-9606
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
853289.pdf5.31 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons