Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217521
Title: Nearly outer functions as extreme points in punctured Hardy spaces
Author: Dyakonov, Konstantin M.
Keywords: Espais de Hardy
Funcions de variables complexes
Anàlisi harmònica
Hardy spaces
Functions of complex variables
Harmonic analysis
Issue Date: 4-Jun-2022
Publisher: Elsevier B.V.
Abstract: The Hardy space $H^1$ consists of the integrable functions $f$ on the unit circle whose Fourier coefficients $\widehat{f}(k)$ vanish for $k<0$. We are concerned with $H^1$ functions that have some additional (finitely many) holes in the spectrum, so we fix a finite set $\mathscr{K}$ of positive integers and consider the "punctured" Hardy space $$ H_{\mathscr{K}}^1:=\left\{f \in H^1: \widehat{f}(k)=0 \text { for all } k \in \mathscr{K}\right\} $$ We then investigate the geometry of the unit ball in $H_{\mathscr{X}}^1$. In particular, the extreme points of the ball are identified as those unit-norm functions in $H_{\mathscr{X}}^1$ which are not too far from being outer (in the appropriate sense). This extends a theorem of de Leeuw and Rudin that deals with the classical $H^1$ and characterizes its extreme points as outer functions. We also discuss exposed points of the unit ball in $H_{\mathscr{X}}^1$.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.aim.2022.108330
It is part of: Advances in Mathematics, 2022, vol. 401
URI: https://hdl.handle.net/2445/217521
Related resource: https://doi.org/10.1016/j.aim.2022.108330
ISSN: 0001-8708
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870211.pdf415.23 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons