Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodríguez Soto, Manel-
dc.contributor.authorLópez Sánchez, Maite-
dc.contributor.authorRodríguez-Aguilar, Juan A. (Juan Antonio)-
dc.date.accessioned2025-01-22T09:02:54Z-
dc.date.available2025-01-22T09:02:54Z-
dc.date.issued2021-
dc.identifier.urihttps://hdl.handle.net/2445/217805-
dc.description.abstractAI research is being challenged with ensuring that autonomous agents learn to behave ethically, namely in alignment with moral values. A common approach, founded on the exploitation of Reinforcement Learning techniques, is to design environments that incentivise agents to behave ethically. However, to the best of our knowledge, current approaches do not theoretically guarantee that an agent will learn to behave ethically. Here, we make headway along this direction by proposing a novel way of designing environments wherein it is formally guaranteed that an agent learns to behave ethically while pursuing its individual objectives. Our theoretical results develop within the formal framework of Multi-Objective Reinforcement Learning to ease the handling of an agent's individual and ethical objectives. As a further contribution, we leverage on our theoretical results to introduce an algorithm that automates the design of ethical environments.ca
dc.format.extent7 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherInternational Joint Conferences on Artificial Intelligenceca
dc.relation.isformatofReproducció del document disponible a: https://doi.org/10.24963/ijcai.2021/76-
dc.relation.ispartofComunicació a: 30th International Joint Conference on Artificial Intelligence (IJCAI 2021)-
dc.relation.urihttps://doi.org/10.24963/ijcai.2021/76-
dc.rights(c) IJCAI Organization, 2021-
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationÈtica-
dc.subject.classificationAprenentatge per reforç (Intel·ligència artificial)ca
dc.subject.otherArtificial intelligence-
dc.subject.otherEthics-
dc.subject.otherReinforcement learningen
dc.titleMulti-Objective Reinforcement Learning for Designing Ethical Environmentsca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
417253.pdfMulti-Objective Reinforcement Learning for Designing Ethical Environments302.79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.