Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217853
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCasacuberta, Carles-
dc.contributor.advisorEscalera Guerrero, Sergio-
dc.contributor.authorPujol Vidal, Àlex-
dc.date.accessioned2025-01-23T09:06:36Z-
dc.date.available2025-01-23T09:06:36Z-
dc.date.issued2024-09-02-
dc.identifier.urihttps://hdl.handle.net/2445/217853-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Carles Casacuberta i Sergio Escalera Guerreroca
dc.description.abstractIn this thesis we explore the fundamental principles of Binary Latent Diffusion Models (BLDM), a novel class of generative models that leverage probabilistic deep latent variable models and diffusion processes to approximate complex data distributions. The research delves into probability theory, generative models, and latent space representations, with a focus on Variational Autoencoders (VAE) that lead to Bernoulli Variational Autoencoders (BVAE). The study provides a comprehensive overview of the foundations of Diffusion Models, leading to the formal definition of Discrete Bernoulli Diffusion Models (DBDM) and its training objective. Both, BVAE and DBDM, are the building blocks of the BLDM. Additionally, a practical application is presented. This exploration highlights the mathematical formalization and implementation strategies for BLDMs, paving the way for future advancements in generative modeling.ca
dc.format.extent82 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) Àlex Pujol Vidal, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationProbabilitats combinatòriescat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherMachine learningeng
dc.subject.otherCombinatorial probabilitieseng
dc.subject.otherMaster's thesiseng
dc.titleFundamental principles of Binary Latent Diffusionca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_pujol_vidal_alex.pdfMemòria6.03 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons