Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217853
Title: Fundamental principles of Binary Latent Diffusion
Author: Pujol Vidal, Àlex
Director/Tutor: Casacuberta, Carles
Escalera Guerrero, Sergio
Keywords: Aprenentatge automàtic
Probabilitats combinatòries
Treballs de fi de màster
Machine learning
Combinatorial probabilities
Master's thesis
Issue Date: 2-Sep-2024
Abstract: In this thesis we explore the fundamental principles of Binary Latent Diffusion Models (BLDM), a novel class of generative models that leverage probabilistic deep latent variable models and diffusion processes to approximate complex data distributions. The research delves into probability theory, generative models, and latent space representations, with a focus on Variational Autoencoders (VAE) that lead to Bernoulli Variational Autoencoders (BVAE). The study provides a comprehensive overview of the foundations of Diffusion Models, leading to the formal definition of Discrete Bernoulli Diffusion Models (DBDM) and its training objective. Both, BVAE and DBDM, are the building blocks of the BLDM. Additionally, a practical application is presented. This exploration highlights the mathematical formalization and implementation strategies for BLDMs, paving the way for future advancements in generative modeling.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Carles Casacuberta i Sergio Escalera Guerrero
URI: https://hdl.handle.net/2445/217853
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_pujol_vidal_alex.pdfMemòria6.03 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons