Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218458
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFai Po, H.-
dc.contributor.authorHouben, Akke Mats-
dc.contributor.authorHaeb, Anna-Christina-
dc.contributor.authorJenkins, D.R.-
dc.contributor.authorHill, E.J.-
dc.contributor.authorParri, H.R-
dc.contributor.authorSoriano i Fradera, Jordi-
dc.contributor.authorSaad, D.-
dc.date.accessioned2025-02-03T16:24:51Z-
dc.date.available2025-02-03T16:24:51Z-
dc.date.issued2025-01-09-
dc.identifier.issn2752-6542-
dc.identifier.urihttps://hdl.handle.net/2445/218458-
dc.description.abstractUnderstanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process. We devise a probabilistic method for inferring the effective network structure by integrating techniques from Bayesian statistics, statistical physics, and principled machine learning. The method and resulting algorithm allow one to infer the effective network structure, identify the excitatory and inhibitory type of its constituents, and predict neuronal spiking activity by employing the inferred structure. We validate the method and algorithm’s performance using synthetic data, spontaneous activity of an in silico emulator, and realistic in vitro neuronal networks of modular and homogeneous connectivity, demonstrating excellent structure inference and activity prediction. We also show that our method outperforms commonly used existing methods for inferring neuronal network structure. Inferring the evolving effective structure of neuronal networks will provide new insight into the learning process due to stimulation in general and will facilitate the development of neuron-based circuits with computing capabilities.-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.relation.isformatofhttps://doi.org/https://doi.org/10.1093/pnasnexus/pgae565-
dc.relation.ispartof2025, vol. 4-
dc.relation.urihttps://doi.org/https://doi.org/10.1093/pnasnexus/pgae565-
dc.rights, 2025-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationModel d'Ising-
dc.subject.classificationNeurociències-
dc.subject.otherIsing model-
dc.subject.otherNeurosciences-
dc.titleInferring structure of cortical neuronal networks from activity data: A statistical physics approach-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/-
dc.identifier.idgrec753644-
dc.date.updated2025-02-03T16:24:51Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)
Articles publicats en revistes (Institut de Recerca en Sistemes Complexos (UBICS))

Files in This Item:
File Description SizeFormat 
876519.pdf6.32 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.