Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/218630
Title: | The accuracy of algorithms used by artificial intelligence in cephalometric points detection: a systematic review |
Author: | Ribas-Sabartés, Júlia Sánchez Molins, Meritxell Gustavo d'Oliveira, Nuno |
Keywords: | Cefalometria Intel·ligència artificial Ortodòncia Cephalometry Artificial intelligence Orthodontics |
Issue Date: | 18-Dec-2024 |
Publisher: | MDPI |
Abstract: | Our findings suggest that CNNs represent the most promising AI form for detecting cephalometric landmarks in 2D lateral cranial teleradiography, offering lower error rates and higher reproducibility compared to other AI types reviewed. However, due to significant heterogeneity in study designs, data collection, and performance metrics, a definitive quantitative comparison was not feasible. While AI demonstrates faster and more reproducible results than manual tracing, no algorithms currently match the precision of human professionals. Future research should aim to standardize evaluation criteria and datasets to enable a more robust comparison of AI methods. |
Note: | Reproducció del document publicat a: https://doi.org/https://doi.org/10.3390/bioengineering11121286 |
It is part of: | Bioengineering, 2024, vol. 11, num.12 |
URI: | https://hdl.handle.net/2445/218630 |
Related resource: | https://doi.org/https://doi.org/10.3390/bioengineering11121286 |
ISSN: | 2306-5354 |
Appears in Collections: | Articles publicats en revistes (Odontoestomatologia) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
880022.pdf | 862.84 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License