Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218630
Title: The accuracy of algorithms used by artificial intelligence in cephalometric points detection: a systematic review
Author: Ribas-Sabartés, Júlia
Sánchez Molins, Meritxell
Gustavo d'Oliveira, Nuno
Keywords: Cefalometria
Intel·ligència artificial
Ortodòncia
Cephalometry
Artificial intelligence
Orthodontics
Issue Date: 18-Dec-2024
Publisher: MDPI
Abstract: Our findings suggest that CNNs represent the most promising AI form for detecting cephalometric landmarks in 2D lateral cranial teleradiography, offering lower error rates and higher reproducibility compared to other AI types reviewed. However, due to significant heterogeneity in study designs, data collection, and performance metrics, a definitive quantitative comparison was not feasible. While AI demonstrates faster and more reproducible results than manual tracing, no algorithms currently match the precision of human professionals. Future research should aim to standardize evaluation criteria and datasets to enable a more robust comparison of AI methods.
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.3390/bioengineering11121286
It is part of: Bioengineering, 2024, vol. 11, num.12
URI: https://hdl.handle.net/2445/218630
Related resource: https://doi.org/https://doi.org/10.3390/bioengineering11121286
ISSN: 2306-5354
Appears in Collections:Articles publicats en revistes (Odontoestomatologia)

Files in This Item:
File Description SizeFormat 
880022.pdf862.84 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons