Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/218955
Title: | On the radicality property for spaces of symbols of bounded Volterra operators |
Author: | Cascante, Ma. Carme (Maria Carme) Fàbrega Casamitjana, Joan Pascuas Tijero, Daniel Peláez Márquez, José Ángel |
Keywords: | Espais de Hardy Operadors integrals Espais analítics Funcions de variables complexes Hardy spaces Integral operators Analytic spaces Functions of complex variables |
Issue Date: | 15-Dec-2024 |
Publisher: | Elsevier |
Abstract: | <p>In \cite{Aleman:Cascante:Fabrega:Pascuas:Pelaez} it is shown that the Bloch space $\mathcal{B}$ in the unit disc has the following </p><p>radicality property: if an analytic function $g$ satisfies that $g^n\in \mathcal{B}$, then $g^m\in \mathcal{B}$, for all $m\le n$. Since $\mathcal{B}$ coincides with the space $\mathcal{T}(A^p_\alpha)$ of analytic symbols $g$ such that the Volterra-type operator </p><p>$T_gf(z)= \int_0^z f(\zeta)g'(\zeta)\,d\zeta$</p><p> is bounded on the classical weighted Bergman space $A^p_\alpha$, the radicality property was used to study the composition of paraproducts $T_g$ and $S_gf=T_fg$ on $A^p_{\alpha}$. Motivated by this fact, we prove that $\mathcal{T}(A^p_\omega)$ also has the radicality property, for any radial weight $\omega$. Unlike the classical case, </p><p>the lack of a precise description of $\mathcal{T}(A^p_\omega)$ for a general radial weight, induces us to prove the radicality property for $A^p_\omega$ from precise norm-operator results for compositions of analytic paraproducts.</p> |
Note: | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1016/j.jfa.2024.110658 |
It is part of: | Journal of Functional Analysis, 2024, vol. 287, num.12 |
URI: | https://hdl.handle.net/2445/218955 |
Related resource: | https://doi.org/https://doi.org/10.1016/j.jfa.2024.110658 |
ISSN: | 0022-1236 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
879429.pdf | 539.35 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License