Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218955
Title: On the radicality property for spaces of symbols of bounded Volterra operators
Author: Cascante, Ma. Carme (Maria Carme)
Fàbrega Casamitjana, Joan
Pascuas Tijero, Daniel
Peláez Márquez, José Ángel
Keywords: Espais de Hardy
Operadors integrals
Espais analítics
Funcions de variables complexes
Hardy spaces
Integral operators
Analytic spaces
Functions of complex variables
Issue Date: 15-Dec-2024
Publisher: Elsevier
Abstract: <p>In \cite{Aleman:Cascante:Fabrega:Pascuas:Pelaez} it is shown that the Bloch space $\mathcal{B}$ in the unit disc has the following </p><p>radicality property: if an analytic function $g$ satisfies that $g^n\in \mathcal{B}$, then $g^m\in \mathcal{B}$, for all $m\le n$. Since $\mathcal{B}$ coincides with the space $\mathcal{T}(A^p_\alpha)$ of analytic symbols $g$ such that the Volterra-type operator  </p><p>$T_gf(z)= \int_0^z f(\zeta)g'(\zeta)\,d\zeta$</p><p> is bounded on the classical weighted Bergman space $A^p_\alpha$, the radicality property was used to study the composition of paraproducts $T_g$ and $S_gf=T_fg$ on $A^p_{\alpha}$. Motivated by this fact, we prove that $\mathcal{T}(A^p_\omega)$ also has the radicality property, for any radial weight $\omega$. Unlike the classical case, </p><p>the lack of a precise description of $\mathcal{T}(A^p_\omega)$ for a general radial weight, induces us to prove the radicality property for $A^p_\omega$ from precise norm-operator results for compositions of analytic paraproducts.</p>
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.1016/j.jfa.2024.110658
It is part of: Journal of Functional Analysis, 2024, vol. 287, num.12
URI: https://hdl.handle.net/2445/218955
Related resource: https://doi.org/https://doi.org/10.1016/j.jfa.2024.110658
ISSN: 0022-1236
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
879429.pdf539.35 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons