Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219442
Title: Landmark anything: multi-view consensus convolutional networks applied to the 3D landmarking of Anatomical Structures
Author: Heredia Lidón, Álvaro
García Mascarel, Christian
Echeverry, Luis Miguel
Herrera Escartín, Daniel
Fortea Ormaechea, Juan
Pomarol-Clotet, Edith
Fatjó-Vilas Mestre, Mar
Martínez Abadías, Neus, 1978-
Sevillano, Xavier
Keywords: Intel·ligència artificial
Marcadors bioquímics
Artificial intelligence
Biochemical markers
Issue Date: 2024
Publisher: IOS Press
Abstract: As shape alterations in three-dimensional biological structures are as- sociated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks -originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results.
Note: Reproducció del document publicat a: https://doi.org/10.3233/FAIA240438
It is part of: Capítol del llibre: Alsinet, Teresa, Vilasís, Xavier , García, Daniel, Álvarez, Elena (eds.), Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence, IOS Press, 2024, [ISBN 9781643685434], pp. 209-212
URI: https://hdl.handle.net/2445/219442
Related resource: https://doi.org/10.3233/FAIA240438
Appears in Collections:Llibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
Heredia et al 2024_Landmark anything.pdf340.58 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons