Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219964
Title: Leveraging epistemic uncertainty to improve tumour segmentation in breast MRI: an exploratory analysis
Author: Joshi, Smriti
Osuala, Richard
Garrucho, Lidia
Tsirikoglou, Apostolia
Riego, Javier del
Gwoździewicz, Katarzyna
Kushibar, Kaisar
Díaz, Oliver
Lekadir, Karim, 1977-
Keywords: Imatges mèdiques
Aprenentatge automàtic
Càncer de mama
Imaging systems in medicine
Machine learning
Breast cancer
Issue Date: 2024
Publisher: SPIE
Series/Report no: Proceedings SPIE
12926
Abstract: Medical image segmentation has improved with deep-learning methods, especially for tumor segmentation. However, variability in tumor shapes, sizes, and enhancement remains a challenge. Breast MRI adds further uncertainty due to anatomical differences. Informing clinicians about result reliability and using model uncertainty to improve predictions are essential. We study Monte-Carlo Dropout for generating multiple predictions and finding consensus segmentation. Our approach reduces false positives using per-pixel uncertainty and improves segmentation metrics. In addition, we study the correlation of model performance to the perceived ease of manual segmentation. Finally, we compare the per-pixel uncertainty with the inter-rater variability as segmented by six different radiologists. Our code is available at https://github.com/smriti-joshi/uncertainty-segmentation-mcdropout.git.
Note: Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006783
It is part of: Comunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 1292616 (2 April 2024)
URI: https://hdl.handle.net/2445/219964
Related resource: https://doi.org/10.1117/12.3006783
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
SPIE_1 2024_SPIE_Segmentation_Uncertainty.pdf1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.