Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/219964
Title: | Leveraging epistemic uncertainty to improve tumour segmentation in breast MRI: an exploratory analysis |
Author: | Joshi, Smriti Osuala, Richard Garrucho, Lidia Tsirikoglou, Apostolia Riego, Javier del Gwoździewicz, Katarzyna Kushibar, Kaisar Díaz, Oliver Lekadir, Karim, 1977- |
Keywords: | Imatges mèdiques Aprenentatge automàtic Càncer de mama Imaging systems in medicine Machine learning Breast cancer |
Issue Date: | 2024 |
Publisher: | SPIE |
Series/Report no: | Proceedings SPIE 12926 |
Abstract: | Medical image segmentation has improved with deep-learning methods, especially for tumor segmentation. However, variability in tumor shapes, sizes, and enhancement remains a challenge. Breast MRI adds further uncertainty due to anatomical differences. Informing clinicians about result reliability and using model uncertainty to improve predictions are essential. We study Monte-Carlo Dropout for generating multiple predictions and finding consensus segmentation. Our approach reduces false positives using per-pixel uncertainty and improves segmentation metrics. In addition, we study the correlation of model performance to the perceived ease of manual segmentation. Finally, we compare the per-pixel uncertainty with the inter-rater variability as segmented by six different radiologists. Our code is available at https://github.com/smriti-joshi/uncertainty-segmentation-mcdropout.git. |
Note: | Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006783 |
It is part of: | Comunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 1292616 (2 April 2024) |
URI: | https://hdl.handle.net/2445/219964 |
Related resource: | https://doi.org/10.1117/12.3006783 |
Appears in Collections: | Comunicacions a congressos (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SPIE_1 2024_SPIE_Segmentation_Uncertainty.pdf | 1.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.