Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219966
Title: A study on the role of radiomics feature stability in predicting breast cancer subtypes
Author: Cama, Isabella
Guzman Requena, Alejandro
Garbarino, Sara
Campi, Cristina
Lekadir, Karim, 1977-
Díaz, Oliver
Keywords: Càncer de mama
Imatges per ressonància magnètica
Aprenentatge automàtic
Breast cancer
Magnetic resonance imaging
Machine learning
Issue Date: 2024
Publisher: SPIE
Series/Report no: Proceedings SPIE
13174
Abstract: Imaging features (radiomics) have potential for predicting Triple Negative Breast Cancer and other subtypes using magnetic resonance images (MRI). This work uses 244 images from the Duke-Breast-Cancer-MRI dataset to investigate the complex interplay between radiomics feature stability, with respect to segmentation variability, and prediction results of machine learning models. Our analysis reveals that features demonstrating high stability across different segmentations tend to enhance model performance, whereas unstable features sensitive to small segmentation changes degrade predictive accuracy. This exploration underscores the importance of feature stability in the development of reliable models for breast cancer subtype classification.
Note: Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3027015
It is part of: Comunicació a: Proc. SPIE 13174, 17th International Workshop on Breast Imaging (IWBI 2024), 131741O (29 May 2024)
URI: https://hdl.handle.net/2445/219966
Related resource: https://doi.org/10.1117/12.3027015
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
SPIE_2 SPIE Abstract_submission___IWBI_2024_Alejandro_Isabella (1).pdf752.41 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.