Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/219966
Title: | A study on the role of radiomics feature stability in predicting breast cancer subtypes |
Author: | Cama, Isabella Guzman Requena, Alejandro Garbarino, Sara Campi, Cristina Lekadir, Karim, 1977- Díaz, Oliver |
Keywords: | Càncer de mama Imatges per ressonància magnètica Aprenentatge automàtic Breast cancer Magnetic resonance imaging Machine learning |
Issue Date: | 2024 |
Publisher: | SPIE |
Series/Report no: | Proceedings SPIE 13174 |
Abstract: | Imaging features (radiomics) have potential for predicting Triple Negative Breast Cancer and other subtypes using magnetic resonance images (MRI). This work uses 244 images from the Duke-Breast-Cancer-MRI dataset to investigate the complex interplay between radiomics feature stability, with respect to segmentation variability, and prediction results of machine learning models. Our analysis reveals that features demonstrating high stability across different segmentations tend to enhance model performance, whereas unstable features sensitive to small segmentation changes degrade predictive accuracy. This exploration underscores the importance of feature stability in the development of reliable models for breast cancer subtype classification. |
Note: | Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3027015 |
It is part of: | Comunicació a: Proc. SPIE 13174, 17th International Workshop on Breast Imaging (IWBI 2024), 131741O (29 May 2024) |
URI: | https://hdl.handle.net/2445/219966 |
Related resource: | https://doi.org/10.1117/12.3027015 |
Appears in Collections: | Comunicacions a congressos (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SPIE_2 SPIE Abstract_submission___IWBI_2024_Alejandro_Isabella (1).pdf | 752.41 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.