Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/219974
Title: | Pre- to post-contrast breast MRI synthesis for enhanced tumour segmentation |
Author: | Osuala, Richard Joshi, Smriti Tsirikoglou, Apostolia Garrucho, Lidia López Pinaya, Walter Hugo Díaz, Oliver Lekadir, Karim, 1977- |
Keywords: | Càncer de mama Aprenentatge automàtic Substàncies de contrast Breast cancer Machine learning Contrast media (Diagnostic imaging) |
Issue Date: | 2024 |
Publisher: | SPIE |
Series/Report no: | Proceedings SPIE 12926 |
Abstract: | Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccu- mulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation. Our code is available at https://github.com/RichardObi/pre_post_synthesis. |
Note: | Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006961 |
It is part of: | Comunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129260Y (2 April 2024) |
URI: | https://hdl.handle.net/2445/219974 |
Related resource: | https://doi.org/10.1117/12.3006961 |
Appears in Collections: | Comunicacions a congressos (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SPIE_4 Osuala SPIE Medical Imaging 2024.pdf | 7.93 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.