Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOsuala, Richard-
dc.contributor.authorJoshi, Smriti-
dc.contributor.authorTsirikoglou, Apostolia-
dc.contributor.authorGarrucho, Lidia-
dc.contributor.authorLópez Pinaya, Walter Hugo-
dc.contributor.authorDíaz, Oliver-
dc.contributor.authorLekadir, Karim, 1977--
dc.date.accessioned2025-03-25T10:21:23Z-
dc.date.available2025-03-25T10:21:23Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/219974-
dc.description.abstractDespite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccu- mulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation. Our code is available at https://github.com/RichardObi/pre_post_synthesis.ca
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherSPIEca
dc.relation.isformatofVersió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006961-
dc.relation.ispartofComunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129260Y (2 April 2024)-
dc.relation.ispartofseriesProceedings SPIEca
dc.relation.ispartofseries12926ca
dc.relation.urihttps://doi.org/10.1117/12.3006961-
dc.rights(c) SPIE, 2024-
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)-
dc.subject.classificationCàncer de mama-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationSubstàncies de contrastca
dc.subject.otherBreast cancer-
dc.subject.otherMachine learning-
dc.subject.otherContrast media (Diagnostic imaging)en
dc.titlePre- to post-contrast breast MRI synthesis for enhanced tumour segmentationca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
SPIE_4 Osuala SPIE Medical Imaging 2024.pdf7.93 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.