Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/219974
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Osuala, Richard | - |
dc.contributor.author | Joshi, Smriti | - |
dc.contributor.author | Tsirikoglou, Apostolia | - |
dc.contributor.author | Garrucho, Lidia | - |
dc.contributor.author | López Pinaya, Walter Hugo | - |
dc.contributor.author | Díaz, Oliver | - |
dc.contributor.author | Lekadir, Karim, 1977- | - |
dc.date.accessioned | 2025-03-25T10:21:23Z | - |
dc.date.available | 2025-03-25T10:21:23Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://hdl.handle.net/2445/219974 | - |
dc.description.abstract | Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccu- mulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation. Our code is available at https://github.com/RichardObi/pre_post_synthesis. | ca |
dc.format.extent | 12 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.publisher | SPIE | ca |
dc.relation.isformatof | Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006961 | - |
dc.relation.ispartof | Comunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129260Y (2 April 2024) | - |
dc.relation.ispartofseries | Proceedings SPIE | ca |
dc.relation.ispartofseries | 12926 | ca |
dc.relation.uri | https://doi.org/10.1117/12.3006961 | - |
dc.rights | (c) SPIE, 2024 | - |
dc.source | Comunicacions a congressos (Matemàtiques i Informàtica) | - |
dc.subject.classification | Càncer de mama | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Substàncies de contrast | ca |
dc.subject.other | Breast cancer | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Contrast media (Diagnostic imaging) | en |
dc.title | Pre- to post-contrast breast MRI synthesis for enhanced tumour segmentation | ca |
dc.type | info:eu-repo/semantics/conferenceObject | ca |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Comunicacions a congressos (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SPIE_4 Osuala SPIE Medical Imaging 2024.pdf | 7.93 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.