Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219974
Title: Pre- to post-contrast breast MRI synthesis for enhanced tumour segmentation
Author: Osuala, Richard
Joshi, Smriti
Tsirikoglou, Apostolia
Garrucho, Lidia
López Pinaya, Walter Hugo
Díaz, Oliver
Lekadir, Karim, 1977-
Keywords: Càncer de mama
Aprenentatge automàtic
Substàncies de contrast
Breast cancer
Machine learning
Contrast media (Diagnostic imaging)
Issue Date: 2024
Publisher: SPIE
Series/Report no: Proceedings SPIE
12926
Abstract: Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccu- mulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation. Our code is available at https://github.com/RichardObi/pre_post_synthesis.
Note: Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006961
It is part of: Comunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129260Y (2 April 2024)
URI: https://hdl.handle.net/2445/219974
Related resource: https://doi.org/10.1117/12.3006961
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
SPIE_4 Osuala SPIE Medical Imaging 2024.pdf7.93 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.