Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220327
Title: Fat-suppressed breast MRI synthesis for domain adaptation in tumour segmentation
Author: Garrucho, Lidia
Delegue, Eve
Osuala, Richard
Kessler, Dimitri
Kushibar, Kaisar
Díaz, Oliver
Lekadir, Karim, 1977-
Igual Muñoz, Laura
Keywords: Càncer de mama
Aprenentatge automàtic
Imatges per ressonància magnètica
Breast cancer
Machine learning
Magnetic resonance imaging
Issue Date: 12-Feb-2025
Series/Report no: Lecture Notes in Computer Science
15451
Abstract: Heterogeneity in dynamic contrast-enhanced breast MRI acquisition protocols hinders the generalization of automatic tumour segmentation tools. While fat-suppressed MRI acquisition is common, some vendors do not provide these sequences, making a segmentation model trained with fat-suppressed images unusable for non-fat-suppressed cases. In this study, we propose two strategies to alleviate this issue. The first approach involves translating non-fat-suppressed to fat-suppressed breast MRI. The second approach integrates synthetic non-fat-suppressed MRI into the training pipeline of tumour segmentation models. Our experimental results demonstrate that both approaches significantly improve segmentation performance on non-fat-suppressed MRI, suggesting that domain adaptation techniques based on image synthesis can enhance the accuracy and reliability of tumour segmentation in breast MRI. The generative models will be made publicly available at medigan library (medigan [18] GitHub repository).
Note: Versió postprint de la comunicació Fat-suppressed breast MRI synthesis for domain adaptation in tumour segmentation del volum publicat a: https://doi.org/10.1007/978-3-031-77789-9_20
It is part of: Comunicació al congrés: Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care: First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024.
URI: https://hdl.handle.net/2445/220327
ISBN: 978-3-031-77789-9
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
Fat-Suppressed Breast MRI Synthesis for Domain Adaptation in Tumour Segmentation preprint_article_3.pdfComunicació4.64 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.