Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220330
Title: Mitigating Overdiagnosis Bias in CNN-Based Alzheimer’s Disease Diagnosis for the Elderly
Author: Ngoc Dang, Vien
Casamitjana, Adrià
Hernández-González, Jerónimo
Lekadir, Karim, 1977-
Keywords: Xarxes neuronals convolucionals
Malaltia d'Alzheimer
Imatges mèdiques
Convolutional neural networks
Alzheimer's disease
Imaging systems in medicine
Issue Date: 13-Oct-2024
Series/Report no: Lecture Notes in Computer Science
15198
Abstract: Diagnosing Alzheimer’s disease (AD) presents significant challenges in the oldest populations due to overlapping symptoms of normal cognitive aging and early-stage dementia. While AI algorithms have matched specialist performance in diagnosing AD, they tend to produce unreliable results for the oldest populations, generating false positives that increase radiologist workloads and healthcare costs. In this study, we focus on mitigating overdiagnosis bias in CNN-based AD diagnosis for these groups. We present a post-hoc bias mitigation technique that significantly improves fairness by reducing overdiagnosis and enhances reliability by improving calibration without compromising overall model accuracy. Code is available at: https://github.com/ngoc-vien-dang/C-GTOP.
Note: Versió postprint de la comunicació Mitigating Overdiagnosis Bias in CNN-Based Alzheimer’s Disease Diagnosis for the Elderly del congrés publicat a https://doi.org/10.1007/978-3-031-72787-0_5
It is part of: Comunicació a: Ethics and Fairness in Medical Imaging: Second International Workshop on Fairness of AI in Medical Imaging, FAIMI 2024, and Third International Workshop on Ethical and Philosophical Issues in Medical Imaging, EPIMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024
URI: https://hdl.handle.net/2445/220330
ISBN: 978-3-031-72787-0
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
Mitigating Overdiagnosis Bias.pdfComunicació302.84 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.