Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220572
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOsuala, Richard-
dc.contributor.authorLang, Daniel M.-
dc.contributor.authorRiess, Anneliese-
dc.contributor.authorKaissis, Georgios-
dc.contributor.authorSzafranowska, Zuzanna-
dc.contributor.authorSkorupko, Grzegorz-
dc.contributor.authorDíaz, Oliver-
dc.contributor.authorSchnabel, Julia A.-
dc.contributor.authorLekadir, Karim, 1977--
dc.date.accessioned2025-04-24T10:13:30Z-
dc.date.available2025-04-24T10:13:30Z-
dc.date.issued2025-02-11-
dc.identifier.isbn978-3-031-77789-9-
dc.identifier.urihttps://hdl.handle.net/2445/220572-
dc.description.abstractDeep learning holds immense promise for aiding radiologists in breast cancer detection. However, achieving optimal model performance is hampered by limitations in availability and sharing of data commonly associated to patient privacy concerns. Such concerns are further exacerbated, as traditional deep learning models can inadvertently leak sensitive training information. This work addresses these challenges exploring and quantifying the utility of privacy-preserving deep learning techniques, concretely, (i) differentially private stochastic gradient descent (DP-SGD) and (ii) fully synthetic training data generated by our proposed malignancy-conditioned generative adversarial network. We assess these methods via downstream malignancy classification of mammography masses using a transformer model. Our experimental results depict that synthetic data augmentation can improve privacy-utility tradeoffs in differentially private model training. Further, model pretraining on synthetic data achieves remarkable performance, which can be further increased with DP-SGD fine-tuning across all privacy guarantees. With this first in-depth exploration of privacy-preserving deep learning in breast imaging, we address current and emerging clinical privacy requirements and pave the way towards the adoption of private high-utility deep diagnostic models. Our reproducible codebase is publicly available at https://github.com/RichardObi/mammo_dp.ca
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherSpringerca
dc.relation.isformatofVersió postprint de la comunicació Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data del volum publicat a https://doi.org/10.1007/978-3-031-77789-9-
dc.relation.ispartofComunicació al congrés: Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care: First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024.-
dc.relation.ispartofseriesLecture Notes in Computer Scienceca
dc.relation.ispartofseries15451ca
dc.rightsSpringer Nature Switzerland AG (c) Richard Osuala et al., 2025-
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)-
dc.subject.classificationCàncer de mama-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationImatges per ressonància magnèticaca
dc.subject.otherBreast cancer-
dc.subject.otherMachine learning-
dc.subject.otherMagnetic resonance imagingen
dc.titleEnhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Dataca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Comunicacions a congressos (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
DeepBreath_MICCAI_Workshop_Paper_2024.pdfDeepBreath_MICCAI_Workshop2.25 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.