Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221134
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPuertas i Prats, Eloi-
dc.contributor.authorCastanyer Bibiloni, Francesc Josep-
dc.date.accessioned2025-05-20T10:03:58Z-
dc.date.available2025-05-20T10:03:58Z-
dc.date.issued2025-01-17-
dc.identifier.urihttps://hdl.handle.net/2445/221134-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Eloi Puertas i Pratsca
dc.description.abstractThis thesis explores the application of Retrieval-Augmented Generation (RAG) systems to optimize question answering tasks, addressing limitations of Large Language Models (LLMs) in scalability, efficiency, and domain adaptability. A theoretical foundation is established, highlighting RAG’s role in integrating external knowledge to enhance language models. A RAG pipeline is implemented and evaluated through experiments analyzing embedding models, similarity metrics, retrieval parameters (k), and re-ranking using cross-encoders. Results demonstrate that re-ranking improves retrieval accuracy, even with noisy, large-scale datasets, and highlight trade-offs between retrieval scope and generative performance. This study underscores RAG’s potential as a scalable alternative to finetuning, enabling efficient adaptation to dynamic datasets. Future research could explore advanced RAG variants and hybrid methods for broader applications. The corresponding code notebook can be found on the following GitHub repository, https://github.com/XiscoCasta/LLM-adaptation-techniques.-Evaluating-RAG-modelsen
dc.format.extent40 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Francesc Josep Castanyer Bibiloni, 2025-
dc.rightscodi: GPL (c) Francesc Josep Castanyer Bibiloni, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationTractament del llenguatge natural (Informàtica)-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherNatural language processing (Computer science)-
dc.subject.otherArtificial intelligence-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherMaster's thesis-
dc.titleLLM Adaptation Techniques. Evaluating RAG Strategiesca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfm_Castanyer_Bibiloni_Francesc_Josep.pdfMemòria436.47 kBAdobe PDFView/Open
code.zipCodi font35.36 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons