Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/221134
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Puertas i Prats, Eloi | - |
dc.contributor.author | Castanyer Bibiloni, Francesc Josep | - |
dc.date.accessioned | 2025-05-20T10:03:58Z | - |
dc.date.available | 2025-05-20T10:03:58Z | - |
dc.date.issued | 2025-01-17 | - |
dc.identifier.uri | https://hdl.handle.net/2445/221134 | - |
dc.description | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Eloi Puertas i Prats | ca |
dc.description.abstract | This thesis explores the application of Retrieval-Augmented Generation (RAG) systems to optimize question answering tasks, addressing limitations of Large Language Models (LLMs) in scalability, efficiency, and domain adaptability. A theoretical foundation is established, highlighting RAG’s role in integrating external knowledge to enhance language models. A RAG pipeline is implemented and evaluated through experiments analyzing embedding models, similarity metrics, retrieval parameters (k), and re-ranking using cross-encoders. Results demonstrate that re-ranking improves retrieval accuracy, even with noisy, large-scale datasets, and highlight trade-offs between retrieval scope and generative performance. This study underscores RAG’s potential as a scalable alternative to finetuning, enabling efficient adaptation to dynamic datasets. Future research could explore advanced RAG variants and hybrid methods for broader applications. The corresponding code notebook can be found on the following GitHub repository, https://github.com/XiscoCasta/LLM-adaptation-techniques.-Evaluating-RAG-models | en |
dc.format.extent | 40 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Francesc Josep Castanyer Bibiloni, 2025 | - |
dc.rights | codi: GPL (c) Francesc Josep Castanyer Bibiloni, 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.rights.uri | http://www.gnu.org/licenses/gpl-3.0.ca.html | * |
dc.source | Màster Oficial - Fonaments de la Ciència de Dades | - |
dc.subject.classification | Tractament del llenguatge natural (Informàtica) | - |
dc.subject.classification | Intel·ligència artificial | - |
dc.subject.classification | Xarxes neuronals (Informàtica) | - |
dc.subject.classification | Treballs de fi de màster | - |
dc.subject.other | Natural language processing (Computer science) | - |
dc.subject.other | Artificial intelligence | - |
dc.subject.other | Neural networks (Computer science) | - |
dc.subject.other | Master's thesis | - |
dc.title | LLM Adaptation Techniques. Evaluating RAG Strategies | ca |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Màster Oficial - Fonaments de la Ciència de Dades Programari - Treballs de l'alumnat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfm_Castanyer_Bibiloni_Francesc_Josep.pdf | Memòria | 436.47 kB | Adobe PDF | View/Open |
code.zip | Codi font | 35.36 kB | zip | View/Open |
This item is licensed under a
Creative Commons License