Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221134
Title: LLM Adaptation Techniques. Evaluating RAG Strategies
Author: Castanyer Bibiloni, Francesc Josep
Director/Tutor: Puertas i Prats, Eloi
Keywords: Tractament del llenguatge natural (Informàtica)
Intel·ligència artificial
Xarxes neuronals (Informàtica)
Treballs de fi de màster
Natural language processing (Computer science)
Artificial intelligence
Neural networks (Computer science)
Master's thesis
Issue Date: 17-Jan-2025
Abstract: This thesis explores the application of Retrieval-Augmented Generation (RAG) systems to optimize question answering tasks, addressing limitations of Large Language Models (LLMs) in scalability, efficiency, and domain adaptability. A theoretical foundation is established, highlighting RAG’s role in integrating external knowledge to enhance language models. A RAG pipeline is implemented and evaluated through experiments analyzing embedding models, similarity metrics, retrieval parameters (k), and re-ranking using cross-encoders. Results demonstrate that re-ranking improves retrieval accuracy, even with noisy, large-scale datasets, and highlight trade-offs between retrieval scope and generative performance. This study underscores RAG’s potential as a scalable alternative to finetuning, enabling efficient adaptation to dynamic datasets. Future research could explore advanced RAG variants and hybrid methods for broader applications. The corresponding code notebook can be found on the following GitHub repository, https://github.com/XiscoCasta/LLM-adaptation-techniques.-Evaluating-RAG-models
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Eloi Puertas i Prats
URI: https://hdl.handle.net/2445/221134
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfm_Castanyer_Bibiloni_Francesc_Josep.pdfMemòria436.47 kBAdobe PDFView/Open
code.zipCodi font35.36 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons