Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222680
Title: A monotonicity theorem for subharmonic functions on manifolds
Author: Kulikov, Aleksei
Nicola, Fabio
Ortega Cerdà, Joaquim
Tilli, Paolo
Keywords: Teoria quàntica
Optimització matemàtica
Teoria geomètrica de funcions
Quantum theory
Mathematical optimization
Geometric function theory
Issue Date: 7-Jul-2025
Publisher: Elsevier B.V.
Abstract: We provide a sharp monotonicity theorem about the distribution of subharmonic functions on manifolds, which can be regarded as a new, measure theoretic form of the uncertainty principle. As an illustration of the scope of this result, we deduce contractivity estimates for analytic functions on the Riemann sphere, the complex plane and the Poincaré disc, with a complete description of the extremal functions, hence providing a unified and illuminating perspective of a number of results and conjectures on this subject, in particular on the Wehrl entropy conjecture by Lieb and Solovej. In this connection, we completely prove that conjecture for $SU$(2), by showing that the corresponding extremals are only the coherent states. Also, we show that the above (global) estimates admit a local counterpart and in all cases we characterize also the extremal subsets, among those of fixed assigned measure.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.aim.2025.110423
It is part of: Advances in Mathematics, 2025, vol. 479
URI: https://hdl.handle.net/2445/222680
Related resource: https://doi.org/10.1016/j.aim.2025.110423
ISSN: 0001-8708
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
895102.pdf482.72 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons