Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/222680
Title: | A monotonicity theorem for subharmonic functions on manifolds |
Author: | Kulikov, Aleksei Nicola, Fabio Ortega Cerdà, Joaquim Tilli, Paolo |
Keywords: | Teoria quàntica Optimització matemàtica Teoria geomètrica de funcions Quantum theory Mathematical optimization Geometric function theory |
Issue Date: | 7-Jul-2025 |
Publisher: | Elsevier B.V. |
Abstract: | We provide a sharp monotonicity theorem about the distribution of subharmonic functions on manifolds, which can be regarded as a new, measure theoretic form of the uncertainty principle. As an illustration of the scope of this result, we deduce contractivity estimates for analytic functions on the Riemann sphere, the complex plane and the Poincaré disc, with a complete description of the extremal functions, hence providing a unified and illuminating perspective of a number of results and conjectures on this subject, in particular on the Wehrl entropy conjecture by Lieb and Solovej. In this connection, we completely prove that conjecture for $SU$(2), by showing that the corresponding extremals are only the coherent states. Also, we show that the above (global) estimates admit a local counterpart and in all cases we characterize also the extremal subsets, among those of fixed assigned measure. |
Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.aim.2025.110423 |
It is part of: | Advances in Mathematics, 2025, vol. 479 |
URI: | https://hdl.handle.net/2445/222680 |
Related resource: | https://doi.org/10.1016/j.aim.2025.110423 |
ISSN: | 0001-8708 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
895102.pdf | 482.72 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License