Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223171
Title: | Structural reflection for large cardinal partition properties |
Author: | Cobo Rodríguez, Germán |
Director/Tutor: | Bagaria, Joan |
Keywords: | Lògica matemàtica Teoria axiomàtica de conjunts Nombres cardinals Treballs de fi de màster Mathematical logic Axiomatic set theory Cardinal numbers Master's thesis |
Issue Date: | Sep-2025 |
Abstract: | In the theory of large cardinals, the Structural Reflection research program has the ultimate goal of providing a uniform way of characterizing any large cardinal notion in terms of structural reflection principles. In the present work, we study and provide such a characterization for Erdős, Ramsey, Rowbottom and Jónsson cardinals, which are large cardinal notions commonly defined in terms of partition properties and contained in the region below the first measurable cardinal. We introduce three new families of structural reflection principles: the invariant structural reflection principles, which characterize Erdős and Ramsey cardinals; the two-cardinal structural reflection principles, which characterize Rowbottom cardinals; and the proper structural reflection principles, which characterize Jónsson cardinals. Finally, we show how a particular generalization of a proper structural reflection principle yields a characterization of exacting cardinals. |
Note: | Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2024-2025. Tutor: Joan Bagaria Pigrau |
URI: | https://hdl.handle.net/2445/223171 |
Appears in Collections: | Màster Oficial - Pure and Applied Logic / Lògica Pura i aplicada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFM_Cobo Rodríguez_Germán.pdf | 577.8 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License