Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarrido, L. (Luis), 1930-cat
dc.description.abstractIn this paper we find the quantities that are adiabatic invariants of any desired order for a general slowly time-dependent Hamiltonian. In a preceding paper, we chose a quantity that was initially an adiabatic invariant to first order, and sought the conditions to be imposed upon the Hamiltonian so that the quantum mechanical adiabatic theorem would be valid to mth order. [We found that this occurs when the first (m - 1) time derivatives of the Hamiltonian at the initial and final time instants are equal to zero.] Here we look for a quantity that is an adiabatic invariant to mth order for any Hamiltonian that changes slowly in time, and that does not fulfill any special condition (its first time derivatives are not zero initially and finally).eng
dc.format.extent8 p.-
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document proporcionada per AIP i
dc.relation.ispartofJournal of Mathematical Physics, 1964, vol. 5, p. 355-
dc.rights(c) American Institute of Physics, 1964-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationTeoria quànticacat
dc.subject.classificationEspais de Hilbertcat
dc.subject.classificationPertorbació (Dinàmica quàntica)cat
dc.subject.otherQuantum theoryeng
dc.subject.otherHilbert spaceeng
dc.subject.otherPerturbation (Quantum dynamics)eng
dc.titleGeneralized adiabatic invarianceeng
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
12485.pdf569.18 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.