Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/51504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJarque i Ribera, Xavier-
dc.date.accessioned2014-03-13T09:14:49Z-
dc.date.available2014-03-13T09:14:49Z-
dc.date.issued2011-
dc.identifier.issn0002-9939-
dc.identifier.urihttps://hdl.handle.net/2445/51504-
dc.description.abstractLet $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Mathematical Society (AMS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-2010-10611-1-
dc.relation.ispartofProceedings of the American Mathematical Society, 2011, vol. 139, num. 6, p. 2057-2065-
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9939-2010-10611-1-
dc.rights(c) American Mathematical Society (AMS), 2011-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationDinàmica-
dc.subject.classificationFuncions holomorfes-
dc.subject.classificationDinàmica topològica-
dc.subject.otherDynamics-
dc.subject.otherHolomorphic functions-
dc.subject.otherTopological dynamics-
dc.titleOn the connectivity of the escaping set for complex exponential Misiurewicz parameters-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec600317-
dc.date.updated2014-03-13T09:14:49Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
600317.pdf1.61 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.