Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDíaz Guilera, Albertcat
dc.description.abstractDifferent microscopic models exhibiting self-organized criticality are studied numerically and analytically. Numerical simulations are performed to compute critical exponents, mainly the dynamical exponent, and to check universality classes. We find that various models lead to the same exponent, but this universality class is sensitive to disorder. From the dynamic microscopic rules we obtain continuum equations with different sources of noise, which we call internal and external. Different correlations of the noise give rise to different critical behavior. A model for external noise is proposed that makes the upper critical dimensionality equal to 4 and leads to the possible existence of a phase transition above d=4. Limitations of the approach of these models by a simple nonlinear equation are discussed.eng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i
dc.relation.ispartofPhysical Review A, 1992, vol. 45, núm. 12, p. 8551-8558.eng
dc.rights(c) The American Physical Society, 1992eng
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationFenòmens crítics (Física)cat
dc.subject.classificationTransformacions de fase (Física estadística)cat
dc.subject.otherCritical phenomena (Physics)eng
dc.subject.otherPhase transformations (Statistical physics)eng
dc.titleNoise and dynamics of self-organized critical phenomenaeng
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
64411.pdf1.27 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.