Dual Improvement of β‐MnO2 Oxygen Evolution Electrocatalysts via Combined Substrate Control and Surface Engineering

dc.contributor.authorBigiani, Lorenzo
dc.contributor.authorGasparotto, Alberto
dc.contributor.authorMaccato, Chiara
dc.contributor.authorSada, Cinzia
dc.contributor.authorVerbeeck, Johan
dc.contributor.authorAndreu Arbella, Teresa
dc.contributor.authorMorante i Lleonart, Joan Ramon
dc.contributor.authorBarreca, Davide
dc.date.accessioned2021-10-21T12:06:46Z
dc.date.available2021-10-21T12:06:46Z
dc.date.issued2020-09-18
dc.date.updated2021-10-21T12:06:46Z
dc.description.abstractThe development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO2 systems. Specifically, β-MnO2 nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co3O4 or Fe2O3 nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 V vs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm2 in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO2 system provided a current density of 17.9 mA/cm2 at 1.65 V vs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO2 and RuO2 benchmarks. Overall, the control of β-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec704311
dc.identifier.issn1867-3880
dc.identifier.urihttps://hdl.handle.net/2445/180754
dc.language.isoeng
dc.publisherWiley-VCH
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/cctc.202000999
dc.relation.ispartofChemCatChem, 2020, vol. 12, num. 23, p. 5984-5992
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/823717/EU//ESTEEM3
dc.relation.urihttps://doi.org/10.1002/cctc.202000999
dc.rights(c) Wiley-VCH, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationCatalitzadors
dc.subject.classificationOxigen
dc.subject.classificationNanopartícules
dc.subject.otherCatalysts
dc.subject.otherOxygen
dc.subject.otherNanoparticles
dc.titleDual Improvement of β‐MnO2 Oxygen Evolution Electrocatalysts via Combined Substrate Control and Surface Engineering
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
704311.pdf
Mida:
881.1 KB
Format:
Adobe Portable Document Format